Avoiding Torsion in Structures

Avoiding Torsion in Structures

Where a structure is eccentrically loaded, it can develop significant torsional forces in elements, which they may not have being designed to resist. This article highlights and discusses issues of buildability and detailing which structural engineers must become fully familiar with in order to avoid unforeseen problems that can lead to significant remedial works on-site and in some extreme cases, failures.

I-35 West Bridge Collapse: An Instance of Implicit Assumption

I-35 West Bridge Collapse: An Instance of Implicit Assumption

In 2007 under-engineering, inefficient regulation, ever increasing dead loads combined with inadequate inspections led to the deadliest structural failure in Minnesota’s history. The immediate aftermath saw an investigation board commissioned to probe the cause of the failure. The investigation would discover a systematic collapse in the very layers of defense the engineering profession creates towards preventing catastrophic failures

[UPDATED] Design for Shear Using Bent-up Bars

[UPDATED] Design for Shear Using Bent-up Bars

The most common and conventional method of designing against shear in reinforced concrete structures is via the provision of shear-links (stirrups). However, in certain scenarios, shear cannot be resisted via the use of links alone, especially where the applied shear-force is enormous. In such scenarios, a very effective way of resisting shear in concrete is by combining shear-links with the provision of bent-up bars